Dielectric and thermal properties of cerium dioxide up to 1000 degrees C and the effect of the porosity for microwave processing studies
Résumé
This work presents the experimental determination of the thermal and dielectric properties of conventionally sintered cerium dioxide (CeO2) samples, with a porosity ranging from 3.68 up to 44.33 vol%. The thermal conductivity, the thermal diffusivity and the heat capacity is determined using Laser Flash analysis and Differential Scanning Calorimetry. A cylindrical microwave cavity was developed to measure dielectric properties up to 1000 °C. The real and imaginary parts of the relative dielectric permittivity; ε′rε′r and ε″rε″r the dielectric loss factor, are obtained using the cavity perturbation theory in TM012 mode at 2.45 GHz. These parameters can be used as inputs for coupled thermo-mechano-electromagnetic modelling of Ceria sintering.
Origine | Fichiers produits par l'(les) auteur(s) |
---|